giovedì 27 febbraio 2025

Lez #3 Atomo di Bohr, eq. Shroedinger: simmetrie, quantità conservate, degenerazioni

Siamo ripartiti dalle osservazioni di Rydberg, assorbimento ed emissione in seguito ad interazione con atomi che avvengono a frequenze (o lunghezze d'onda) con valori proporzionali a differenze di inversi di quadrati di numeri interi. Abbiamo quindi ripercorso la derivazione dell'atomo di Bohr, che fornisce una spiegazione quantitativa a queste osservazioni. In particolare permette di ricavare la costante R collegando le frequenze spettrali osservate a salti tra i livelli energetici dell'atomo, attraverso la costante di Planck. Il tutto con un semplice modello di orbita atomica stabile e momento angolare quantizzato a multipli di accatagliato. Abbiamo infine commentato la probabilità che un atomo si trovi in uno stato eccitato a temperatura ambiente, e ad una temperature dieci volte superiore. 

Abbiamo quindi ragionato sulle conversioni tra unita' di misura e modi per esprimere l'energia (frequenza, numeri d'onda, eV, Kelvin, unita' atomiche). Per casa correggete la slide sulle conversioni, da me ricavata approssimando la velocita' della luce a 3e8 m/s.

Abbiamo quindi introdotto l'equazione di Shrodinger, richiamando la conservazione del momento angolare totale e come questa detti la struttura di autovalori e autostati, espressi in cordinate sferiche. In particolare come si si aspetti l'indipendenza da m (autovalore di Lz) degli autovalori energetici, che dovrebbero invece dipendere da l. Questo non accade per la particolare dipendenza 1/r del potenziale Coulombiano (che implica l'esistenza di un ulteriore vettore conservato, Laplace-Runge-Lenz). Attenzione al legame tra simmetria <--> degenerazione. Link molto utile a riguardo qui.

Nessun commento:

Posta un commento