giovedì 27 febbraio 2025

Lez #3 Atomo di Bohr, eq. Shroedinger: simmetrie, quantità conservate, degenerazioni

Siamo ripartiti dalle osservazioni di Rydberg, assorbimento ed emissione in seguito ad interazione con atomi che avvengono a frequenze (o lunghezze d'onda) con valori proporzionali a differenze di inversi di quadrati di numeri interi. Abbiamo quindi ripercorso la derivazione dell'atomo di Bohr, che fornisce una spiegazione quantitativa a queste osservazioni. In particolare permette di ricavare la costante R collegando le frequenze spettrali osservate a salti tra i livelli energetici dell'atomo, attraverso la costante di Planck. Il tutto con un semplice modello di orbita atomica stabile e momento angolare quantizzato a multipli di accatagliato. Abbiamo infine commentato la probabilità che un atomo si trovi in uno stato eccitato a temperatura ambiente, e ad una temperature dieci volte superiore. 

Abbiamo quindi ragionato sulle conversioni tra unita' di misura e modi per esprimere l'energia (frequenza, numeri d'onda, eV, Kelvin, unita' atomiche). Per casa correggete la slide sulle conversioni, da me ricavata approssimando la velocita' della luce a 3e8 m/s.

Abbiamo quindi introdotto l'equazione di Shrodinger, richiamando la conservazione del momento angolare totale e come questa detti la struttura di autovalori e autostati, espressi in cordinate sferiche. In particolare come si si aspetti l'indipendenza da m (autovalore di Lz) degli autovalori energetici, che dovrebbero invece dipendere da l. Questo non accade per la particolare dipendenza 1/r del potenziale Coulombiano (che implica l'esistenza di un ulteriore vettore conservato, Laplace-Runge-Lenz). Attenzione al legame tra simmetria <--> degenerazione. Link molto utile a riguardo qui.

mercoledì 26 febbraio 2025

Lez #1+2 Crisi della fisica classica e spettri atomici

 Abbiamo discusso cosa ci si aspetta da questo corso e dato alcune regole/informazioni pratiche (vedi classroom).

Siamo quindi passati a discutere gli esperimenti storici nei quali la meccanica quantistica gioca un ruolo cruciale per l'interpretazione dell'interazione radiazione materia. In particolare l'effetto fotoelettrico, che dimostra la natura corpuscolare della luce (aspetti cruciali sono la dipendenza del potenziale di arresto dalla frequenza della luce e NON dalla sua intensita', e la dipendenza della corrente elettrica dall'intensità della luce, buon riferimento qui: https://www.fe.infn.it/u/ciullo/Intro_Lab/effetto_fotoelettrico.pdf) e l'esperimento di Frank-Hertz, che prova l'esistenza di interazioni anelastiche con scambi di energia "quantizzati" con la struttura atomica (importante qui capire perche' si osservano spot luminosi in alcuni punti del tubo, in funzione del potenziale applicato). Importante capire anche la natura dei massimi e dei minimi e la loro relazione con urti elastici/anelastici. Buon riferimento qui.

Abbiamo poi misurato in classe lo spettro di emissione di diverse sorgenti: una lampada a filamento (oggetto incandescente, spettro continuo simile a corpo nero, suggerisco di riguardare la derivazione a chi non la padroneggia), gas a bassa pressione (emissione spontanea, tipo Frank-Hertz), led cellulare (stato solido, transizione in emissione spontanea tra bande, ci torneremo quando faremo solidi), laser (emissione stimolata).

Siamo partiti dalle osservazioni di Rydberg, assorbimento ed emissione in seguito ad interazione con atomi che avvengono a frequenze (o lunghezze d'onda) con valori proporzionali a differenze di inversi di quadrati di numeri interi.