giovedì 6 marzo 2025

Lez #8: Interazione radiazione materia II

 Abbiamo richiamato l'espressione per il b-esimo coefficiente dipendente dal tempo ottenuta la scorsa lezione. L'abbiamo applicata al caso di un potenziale vettore policromatico (integrale sulle frequenze), ragionando sul caso di una somma finita (quindi potenziale periodico, serie di Fourier) ottenendo (modulo quadro) l'espressione della probabilita' di transizione e dell'elemento di matrice coinvolto. Un primo importante risultato e' che l'integrazione in tempo porta alla condizione (delta di Dirac) secondo la quale si ha l'interazione solo se lo spettro del campo ha componente a frequenza corrispondente all'energia pari al salto tra livelli coinvolti (positivo=assorbimento, negativo=emissione), che si puo' interpretare come conservazione dell'energia. Questo formalizza di fatto la grande intuizione di uno dei postulati di Bohr: un campo esterno puo' cedere energia all'atomo (assorbimento) oppure acquisirla (emissione) con la stessa probabilita'. 

Attenzione al passaggio della doppia integrazione in omega, abbiamo discusso i problemi del Bransden/dispense (dimensioni, ipotesi non necessaria delle fasi random), fate riferimento alle slides trattando il caso della doppia somma. 

Abbiamo infine visto l'approssimazione di dipolo.

Nessun commento:

Posta un commento